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The development of an incompressible, laminar, pulsatile boundary layer over a 
semi-infinite flat plate is studied. Although the undisturbed free stream flow is taken 
to be non-reversing (following previous studies), sufficiently far downstream, the flow 
in part of the boundary layer must ultimately reverse direction during part of the 
cycle. 

A novel numerical (finite-difference) scheme is described, which builds in the time 
periodicity of the flow, and also takes into account the direction of the flow in 
deciding the form of the differencing in the streamwise direction. The effect of 
variations in numerical grid is investigated, and comparison is made with asymptotic 
formulae applicable close to and far from the leading edge of the plate, together with 
linearized (small oscillation) results obtained using the analysis of Ackerberg & 
Phillips (1972), which is shown to yield remarkably accurate results when compared 
with the solution for the full problem, even for quite large oscillation amplitudes. 

1. Introduction and formulation 
I n  this paper the development of an incompressible, pulsatile boundary layer over 

a semi-infinite flat plate is discussed. The undisturbed free stream flow is taken to be 
U,(l +hcoswt*), parallel to  the plate, with (A( < 1 and so the free stream does not 
reverse direction. Within the framework of the classical boundary-layer formulation, 
the following problem results (see for example Pedley 1972) : 

(1.1) *,t* + *y * x ,  - * x  *,, = - U, sin wt* + v*,y,. 

Here I$ is a dimensional stream function, and the velocity vector is then ($,, --$J 
referred to the Cartesian coordinates (x, y). The boundary conditions (corresponding 
to zero fluid velocity on the surface y = 0, and matching with the free stream 
velocity) are 

$ = @ , = O  on y = O ,  x > O , \  

~y-+U,(i+hcoswt*) as y-coj 

(together with free-stream conditions a t  x = 0). 
The problem for h < 1 has received a good deal of attenuation over the years. Some 

of the first investigations include those of Lighthill (1954), Lam & Rott (1960) and 
Ackerberg & Phillips (1972). Close to the leading edge of the plate the flow is basically 
Blasius in form, whilst downstream the solution takes on a double structure 
comprising an inner Stokes-type layer, together with an outer, Blasius-type layer. 
Numerical solutions extending from the leading edge of the plate to far downstream 
have been obtained for this linearized case ( A  < 1 )  by Ackerberg & Phillips (1972) 
and by Goldstein, Pockol & Sanz (1983). The far downstream behaviour in this case 
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has been the subject of much discussion. In  this limit (it is argued) a set of 
eigensolutions which decay exponentially fast in the streamwise direction must be 
present. One set of eigensolutions has been found by Lam & Rott (1960) and by 
Ackerberg & Phillips (1972) ; these are determined by conditions at the wall, and are 
characterized by a decay rate that decreases as the eigenvalue increases. A second set 
of eigenvalues has been found by Brown & Stewartson (1973a, b ) ;  these are 
determined by conditions on the outer edge of the boundary layer, and are 
characterized by a decay rate that increases with increasing order. 

The problem for h = 0(1), (but Jhl < 1)  has also received some attention in the 
past. The asymptotic limit of close to the leading edge was studied by Moore (1951), 
(1957), and Pedley (1972), and the flow is found to  be Blasius-like. The flow far from 
the leading edge which has been discussed by Lin (1956), Gibson (1957) and Pedley 
(1972), takes on a double structure, similar to that for Ihl 4 1. 

In  this paper, the aim is to consider the solution to the h = O(1) problem, from the 
leading edge to far downstream, using a novel numerical method which incorporates 
the time-periodicity into the solution. 

Non-dimensional and similarity-type variables t ,  'I,#, are introduced by 

Before substitution into ( l . l ) ,  a 
numerical expediency), of the form 

(1.3) urn 2 2 = - E  . $ = PzU,l%5, %t), w 

scaled streamwise variable is introduced (for 

c = f(Eh (1.4) 
All the computations to be shown were obtained with 

which results in a concentration of grid points close to the leading edge of the plate, 
6 = 0, once discretization has been performed. 

Equation ( 1 . 1 )  becomes 

&?)?) +;A)?) # + ;Ef '(6 #?)?) & - W F )  El$?) $ 4 5  - E2& = PA sin t .  (1.6) 

Lin's (1956), Pedley's (1972) and related studies were restricted to cases for Ihl < 1, 
and asymptotic solutions in two limits, equivalent to  54 1 and E% 1 were 
considered. In particular flow reversal was shown to oceur quite regularly in this 
problem. 

At the leading edge of the plate, 6 = 0, (1.6) reduces to  

9,,, + i&?)9 = 0, (1.7) 
with boundary conditions 

#('I = 0) = $?)('I = 0) = 0, 1 
#,+i+hcos t  as 7+00,J 

which is a quasi-steady form of the Blasius problem (see for example Rosenhead 
1963). 

The conditions as E+ 03 are obtained from the work of Lin (1956) and Pedley 
(1972). Taking the leading-order terms as E+ 00 reveals the solution splitting into 

h two components, namely 
9 - &('I) +,-9scvt t ) ?  (1.9) 
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where $B is the steady Blasius function (1,7)-(1.8) with h = 0 ) ,  and $s is the Stokes 

(1.10) 

Equation ( 1.9) serves as a downstream boundary condition. Eigensolutions may 
occur, but are exponentially small as c+ 00 (although difficulties may occur much 
further downstream as described by Goldstein 1983). 

Equation (1.9) describes a flow that (however small A )  must ultimately reverse for 
sufficiently large f during part of the time cycle (specifically when r= O(A-l) as 
h + 0). As a result, any numerical scheme used to approximate (1.6) must be capable 
of correctly taking into account changes in flow direction. 

2. Numerical method 
One possible approach to this problem would be a time-marching procedure ; 

however a number of difficulties could arise with such a scheme. First, the start-up 
process could provoke a singularity, such as arises in the problem of flow past a flat 
plate which is instantaneously moved from rest (see for example Hall 1969; Dennis 
1972) or such as occurs in the flow on the surface of an impulsively translated circular 
cylinder (see for example van Dommelen & Shen 1980). Secondly, instabilities of the 
type described by Cowley, Hocking & Tutty (1985) of viscous form, associated with 
critical layers a t  points of zero shear, may be present and could cause numerical 
difficulties. 

Instead, the approach here will be to build in the time periodicity of the solution, 
which eliminates any transient effects, by writing 

in order that $(E,q,t) is a real function. As a consequence of this it is necessary to 
consider only n 2 0 in (2.1). 

Substitution of (2.1) into (1.6) yields the following infinite set of equations: 

where 8i,j is the Kronecker delta, and { }" denotes the eint component of the term 
inside the parenthesis. 

The boundary conditions to be applied are 

A similar treatment for time periodic flows was used by Duck (1981, 1984), but 
these two studies both assumed non-reversing flow. The remaining question is the 
treatment of the 6-derivatives in (2.3). At stations where the flow is forward a t  all 
times, there is no difficulty (see Duck .1981, 1984). However, a t  stations where the 
flow does change direction a t  certain times throughout the cycle, an appropriate 
numerical differencing scheme is required take this properly into account. 

The key to the correct treatment may be obtained by considering a possible time- 
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marching approach to the problem. In this case if, at any ([, y)-station, a t  any time 
q5, > 0, the correct differencing in [ would involve points from 6, [- A[ (and possibly 
[-2A[,[-3A[ etc. depending on the particular differencing scheme used), where A[ 
denotes the grid spacing in [. This operation of differencing during forward-flow 
periods is written symbolically as D+. On the other hand, if the flow changes 
direction, and $? < 0, then to ensure the correct zone of dependence (and hence 
numerical stability), the correct differencing scheme in [ would involve points from 
6,  (+A[ (and possibly [+2A[, [+ 3A5, etc. again depending on the particular 
differencing scheme used). This operation of differencing during reversed-flow 
periods is written symbolically as D- (and merely denotes upwind differencing). 

A scheme is required to approximate $,,[ in (2.3), ($[ will be treated similarly, 
although here this is not essential) if the flow reverses direction during the cycle. this 
turns out to be quite straightforward. The problem may be simply stated as follows; 
suppose that for 0 < t < to, q5v > 0; fort, < t < t,, q5, < 0;  fort, < t < 2x, q5? > 0. The 
following difference approximations are then required : 

and so the nth component of the operation of differencing $,,[ in the [-direction may 
be obtained by evaluating the Fourier time series of (2 .5) .  We have 

1 
2K 

m + n  

+-{(2x + t,--tl)D+ + (t, -t,) D-} q5n,,. (2.6) 

In  situations for which: 0 < t < t,, $,, < 0; whilst for to < t < t,, q511 > 0 ;  and for 
t ,  < t < 2x, q5, < 0, then it is necessary to interchange D+ and D- in (2.6). The scheme 
may also be extended to  cases in which the flow changes direction on more than two 
occasions during the cycle. 

Suppose the approximation to $,,[ is written as D$,,, then this operation maybe 
written symbolically as 

w w  

D$, = I; (Pn ,  mD+$mq + vn, mD-$m?) eint. (2.7) 
n=-w m--w 

Equation (2.3) may then be written as 
W m l m  

$nva,+- 2 j--m c #n-j$jTv+i[{ j=-w 2 [$n-j,, m--m (~j,rnD++~j,mD-)+rn 
W 

- $n-jr c ( P j . m ~ + + v j . m ~ - ) ~ m , ] }  -in[-2$n, = i [ -2A  &,, Inl .  (2.8) 

Second-order central-differencing in 7 (grid size A7 with 0 < 7 d vW)  and first- 
order differencing in [ for both $? < 0 and $, > 0, (grid size A5 with 0 < [ <  tW) were 
used. For example 

m--w 

$n?l? X [@n(6i 7+2A7)-3$n(62 ~ + A ~ ) + 3 $ n ( 5 ,  V)-q5n([> ~ - A ~ ) ] / ( A V ) ~  , (2.9) 

0'4, w [$n(E,7+A7)+$n(t, 7 ) - $ n ( t - A ~ , 7 + A 7 ) - $ n ( t - A [ , 7 ) / 2 A [ ,  (2.10) 

D-$n(tjq) x [ $ ~ ( ~ + A E , . I I + A T ) + ~ ~ ( [ + A [ , ~ ) - $ , ( [ , T + A L \ ~ ~ ) - $ ~ ( ~ , ~ ) I / ~ A [ .  (2.11) 
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The series (2.1) was truncated a t  n = f N ,  and the following (dual iteration) 
procedure was employed. 

The difference approximation to (1.7) and (1.8) was solved (iteratively) with 
4(< = 0) expanded in the truncated form of (2.1) (this amounts to solving the 
discretized approximation to (2.3) and (2.4) with 6 = 0). In  the case of the n = 0 
mode, a form of Newton’s method was used (Gaussian elimination being used to solve 
the quadradiagonal system), whilst all other 4, were solved for directly. All modes 
were considered sequentially, until convergence was deemed to have been achieved 
(usually based on the maximum change of any of the l#o(v)I). Some appropriate 
‘guess ’ was then made for all other modes, at all other <-values (with (1.9) and (1.10) 
imposed a t  the extreme downstream location, 6 = 6,). 

The computation then proceeded to the next <-station (6 = At). Here an iteration 
similar to that employed at 6 = 0 was used. However, at each point (< > 0 , ~  ++A?), 
a t  a given iteration, it is necessary to consider: 

(i) if the flow changes direction (determined by whether 
N 

9&t,T ++AT, 4 = c 9n7(<, T +;AT) eint 
n=-N 

(2.12) 

changes sign during 0 < t < 27t) ; 
(ii) the direction of the flow a t  t = 0 (obtained by evaluating (2.12) a t  t = 0);  
(iii) if the answer to (i) is affirmative, then the times of flow reversal (to,t ,)  are 

determined, by means of evaluating the zeros of (2.12). 
NAG routines C05ADF, C05AXF (which evaluate the zeros of a continuous 

function) and E04BBF (which finds the minimum of a continuous function) were 
used to answer questions (i) and (iii). 

The various modes were solved sequentially, in the manner described above, until 
convergence was achieved. Note that if the flow does not change direction at any 
time throughout the cycle, for 0 < < < g c ,  then the 4,, over this range are then 
completely determined. 

Once the solution up to 6 = <,-A< was attained in the manner described above, 
a second (outer) iteration was imposed, the calculation for stations lying in the range 
tc < < < being considered yet again, repeating the procedure described above, in 
order that information is correctly propagated upstreani (relative to the free-stream 
flow). Convergence of this outer iteration was generally considered to have been 
satisfied when the maximum change in any of the modes of the wall shear a t  any of 
the < between 6, and <,, fell below some suitably small value. The computation was 
then considered to be converged. 

3. Results 
The example h = 0.5 was chosen to test the method. In all the computations 

shown here, (1.5), was used over the range 0 < < < & - O . l  (i.e. 6, = +7t-O.l) ,  giving 
0 < g< 9.967. This example was computed on grids A-I, as described in table 1. 

Figure 1 shows the results for $o, , , , (~  = 0)-distributions with x: (the n = 0 mode is 
of course real), together with the corresponding Im { + l T , , ( ~  = 0))-distributions, as 
obtained from the various computations A-I. These values of q5n,,,, were obtained 
from the (converged) results for 4n, by means of the approximation 
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Computation 
A 
B 
C 
D 
F, 
F 
G 
H 
T 
t J  

N 
4 
4 
4 
4 
4 
2 
9 
4 
4 
4 

h 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.75 

Ak. 
0.03676 
0.03676 
0.03676 
0.03676 
0.073 54 
0.07354 
0.03676 
0.03676 
0.049 03 
0.03676 

TABLE 1. Computation parameters 

T ,  
5 
5 
5 

10 
5 
5 
5 

10 
5 

10 

AT 
0.03 125 
0.125 
0.0625 
0.1% 
0.125 
0.125 
0.125 
0.625 
0.125 
0.0625 

0.5 - Ackerberg 8t B, D, E, F, G, I 
Phillips (1972) 

I Im {+& = 0)) 

P 
v 

%. 

-0" 

0.1 I- / 

0 1 2 3 4 5 6 7 
wx/u* 

FIGIJRE 1 .  Distribution of Im (q&,-o) and $oss17-o; A = i. 

an approximation that was found to be considerably more accurate than the 
more compact, but less accurate, first-order approximation originally used by the 
author. The n = 0 mode seems quite insensitive to changes in any of the grid sizes, 
but does seem a little dependent on voo, even close to x = 0. On the other hand 
Im (q5n77(v = )} is quite insensitive to ym (and also to At) ,  but is rather more sensitive 
to by,  particularly for the larger values ofx.  The reason for this can be seen quite 
clearly by referring to the downstream condition (1.9). As c+ co, the unsteady 
boundary layer is becoming progressively thinner relative to  the 7-scale (as c-l), 
although in terms of the unscaled y-coordinate the Stokes layer thickness becomes 
independent of x, and it is the steady boundary-layer thickness that grows on this 
scale. Hence as becomes larger, a progressively smaller A7 is required in order to 
describe adequately the unsteady component of the solution. 

The linearized analysis of Ackerberg & Phillips (1972) assumes a constant value of 
q50?17,7=o (equal to the Blasius value), and this is shown as a broken line on the vertical 
scale. The largest deviation of the present nonlinear results is clearly seen to occur 
a t  x = 0, whilst in the limit x +  a, &,7,,,=o of course approaches this value. 
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t 
0.361 

0.30 0'31 
T I I I I I I I I I I I I _  

W X I  urn 
FIGURE 2 .  Comparison of computed distributions of q5077,q=o for h = 4, with [+ 1 and c$ 1 

asymptotic solutions. 
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\ 
\ 
\ 
\ 
\ 
\ 

\ x + o  

I I I I I I I I 
0 1 2 3 4 5 6 7 

W X I  urn 
FIGURE 3. Distribution of Re (q5177,v=o); h = i. 

The linearized results of Ackerberg & Phillips (1972) were recomputed, using a 
greatly simplified version of the computer code used for the fully non-linear problem 
(just one mode, n = 1 ,  is computed, by a straightforward marching technique in f ;  
involving no iteration). The results for Im{$177,y=o} with h = 0.5 were found to be 
indistinguishable from our (most accurate) nonlinear results, on the scale used in 
figure 1 .  

It is interesting to gauge the usefulness of the asymptotic expansions, equivalent 
to E4 1 and 1 which have appeared in past literature. Figure 2 shows results (on 
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B, D, E, F, G ,  I - I 

2.0 t 

0.5 - 

I I I I I I I I _  

1.5 i 
I .c 

-0.5 t 
- 1.0 L 

FIGURE .5. Distribution of h = $ at times indicated. 

an enlarged scale) for $orla(q = 0) obtained from computations A-I. Also indicated, as 
broken lines, are the three-term expansion for c+ 1 (e.g. Pedley 1972), and the one- 
term expansion for 5 3  1 ,  i.e. the Blasius result which therefore corresponds to the 
Ackerberg & Phillips (1972) value (as noted by Pedley 1972, there is difficulty in 
obtaining further terms in this expansion, owing to the presence of eigensolutions). 
Figure 2 indicates that c2 = 0.47 is the crossover point where the two expansions 
coincide (agreeing with the value found by Pedley 1972). Figure 3 shows the 
downstream distribution of Re {$l,jT(q = O)} ,  and again the effects of changes in grid 
are shown. Our previous remarks concerning the effect of grid changes on Im{$lqq 
(q  = 0)) are again applicable, as in the comment regarding the closeness of these 
results to those of Ackerberg & Phillips (1972). 

In a further (final) attempt to assess the effect of grid changes, in figure 4 we show 
the distribution of $,/,,(q = 0, x, t = 0). Again, the primary source of numerical error 
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I w x / u ,  

-0.5- 

- 1.oL 

FIGURE 6. Distribution of $7717-o, A = $ at times indicated (linearized results). 

is seen to be the finiteness of Arj (although the second-order accuracy of the scheme 
with Arj is confirmed). It is particularly noteworthy here (confirmed by detailed 
inspection of the computed results), how insignificant changes in the number of 
Fourier modes (i.e. N )  are. Indeed, the amplitudes of the higher modes (i.e. In1 2 2) 
were never more than 7% of the amplitude of the In1 = 1 mode (this maximum 
occurring a t  x = 0). The present problem appears not to be highly nonlinear (the 
primary effect of nonlinearity is to case the small but perceptible derivation of #o 
from the Blasius solution. However, i t  would appear likely that if the scheme were 
to  be applied to a problem admitting fast temporal growths (such as in a problem 
involving the approach of a singularity), then significant numbers of Fourier terms 
could well be necessary. 

Inspection of the results overall suggests that of all the grids employed, 
computation H gave the most accurate overall results, and the remainder of the 
results to be shown were computed with this grid. 

Figure 5 shows distributions of #,,,,(q = O,x, t )  for h = 0.5 with x, a t  four times 
during the cycle. This shows that flow reversal can occur quite close to the leading 
edge. For comparison, figure 6 shows the equivalent linear distributions obtained 
from the analysis of Ackerberg & Phillips (1972) (but computed with our modified 
code), with their small parameter 8 ( A  in our notation) set equal to 0.5. These results 
are seen to give a remarkably good description of the full problem. 

Figures 7 (u) ,  7 (b)  and 7 (c) show instantaneous velocity profiles at t = 0, $IT, IT, :IT 
for wx/U,  = 0, 1.7192 and 3.9200 respectively (for the full problem). The 
development of reversed flow downstream is clearly observed, as is the downstream 
formation of a sub-(Stokes) layer. 

We now turn our attention to a larger value of oscillation parameter, namely 
h = 0.75. This case was evaluated using the grid described by computation J (whose 
grid was comparable with that of computation H). 

Figure 8 shows the distribution of #,,&?,I = O,x, t )  with x at t = 0, $IT, z, in. These 
exhibit broadly the same characteristics as the corresponding h = 0.5 results (figure 
5 ) ,  although we see that a t  t = n, the reversal point on the wall has moved 
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(b) 

4, 
FIGURE 7. Instantaneous velocity profiles at h = i: (a )  x = 0; ( b )  w x / U ,  = 1.7192; 

(c) o x / U ,  = 3.9200. 

considerably nearer the leading edge. The corresponding results obtained using the 
linearized Ackerberg & Phillips (1972) analysis, by setting h = 0.75, are shown in 
figure 9. Although these give a generally good representation of the full solution, it 
is noteworthy that at t = K it is predicted that $,,,Jy = 0, x, K) < 0, in clear violation 
of our basic assumptions. 

Figures lO(a), 10(b) and lO(c) show instantaneous velocity profiles (for the 
nonlinear problem) a t  t = 0, in, K, fn for wx/U,  = 0, 1.7192 and 3.9200 respectively. 
Here, the region of reversed flow is seen to be increased. 

It is expected that h 2 1 are all singular cases, since then flow reversal would occur 
at/ahead of the leading edge during periods of the cycle. 

In  conclusion, the numerical method introduced here, involving a decomposition 
of the solution into a Fourier (time) series, together with what is believed to be a 
correct differencing scheme for reversing flows, seems to be efficient, although this 
particular problem does not appear to be highly nonlinear. The scheme is generally 
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FIGURE 8. Distribution of 4,,1,,,-o, h = at times indicated. 

1 

2.5 - 

2.0 - 

1.5 - 

L 

8 w x / U ,  

-1.0- 

0.5 t/ 

FIGURE 9. Distribution of 4r,,,,,-o, h = 0 at times indicated (linearized results). 
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9, 
FIGURE 10. Instantaneous velocity profiles at h = 4: (a )  x = 0; (b) wx/Um = 1.7192; 

( c )  w x / U ,  = 3.9200. 

suitable for time-periodic boundary-layer flows which reverse regularly, and the 
author has obtained solutions to other examples using this approach, which compare 
favourably with corresponding time-marching solutions. 

This work was partially supported by NATO Grant 523/82. A number of the 
computations were carried out at the University of Manchester Regional Computer 
Centre, with computer time provided under SERC Grant No. GR/E/25702. 
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